
AD-A206 587
209700-1 -T

Technical Report

PERFORMANCE ANALYSIS OF THE
DAP-610 AS A DATA COMPRESSION
PROCESSOR IN A REAL-TIME
REMIDS SYSTEM

L.M. PRZEBIENDA
MARCH 1989
Report for Period November 1988-February 1989

Performed under Contract DAAK70-88-C-0032 funded by
U.S. Army Belvoir Research & Development Center

Submitted to:
U.S. Army Belvoir Research & Development Center
Countermine Technology Division
Detection Research Team STREB-NMD Bldg. #339 DTIC
Fort Belvoir, Virginia 22060 ELECTE

Attn: Mr. R. Dupont 9APR 1989-

E

110 PWk n"U d own I

"'nll 8 Vll l l I I II ll 1

UNCLASSIFiED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISIIIBU II N/AVAILABILITY OF IEPOR

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Unl imi ted Distribution

4. PERFORMING ORGANIZATION REPORT NUMBERS(S) 5. MONITORING ORGANIZATION REPUIRT NUMBER(S)

209700-1-T

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7b NAME OF MONITOPING ORGANIZATIONERIM (if applicable) .S. Army Belvoir Research & Dev. Center
Countermine Technology Division

6c. ADDRESS (City. Slate. and ZIP Code) 7b. ADDRESS (City. Slate. and ZIP Code)

P.O. Box 8618 Fort Belvoir, VA 22060
Ann Arbor, MI 48107

8a NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
oGANIZA i r (if applicable)U.S.Amy E0voirDAAK70-88-C-O032

Research & Development Ctr.
8c. ADDRESS (Cily. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK 'V'/R(K WN H

Fort Belvoir, VA 22060 ELEMENT NO NO NO ACCESSIOt %0

11. TITLE (Include Secruity Classilicalion)

Performance Analysis of the DAP-610 as a Data Compression Processor
in a Real-Time System

12. PERSONAL AUTHOR(S)
L. M. Przebienda

13a, TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year. Monli. Day) 15 PAGE CUUNITechnical FROM U.L.ZTO389. 1989 March 31

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block ruimbcr)

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse it necessary and identify by block number) U .,

C. I.

" An analysis of the DAPI'r610 (Active Memory Techviology's Distributed Array
Processor) was undertaken to determine if the DAP-610 is' /capable of functioning as a
major system component in a real-time processor. The/evaluated functions required
of the DAP-610 include: a direct link to an external/multispectral sensor sending
16-bit data at a 1.65MHz rate, demultiplexing and reformatting of sensor data, data
compression processing, feature extraction, VMEbus -/ 1 for communication with otlter
system components, and output of high resolution image data for display. TIte DAP-
610 was found to be capable of all these functions. However, processing time estimates
available are insufficient to verify that the implementation will operate within the real
time constraints.

20. OISTRiBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED C3 SAME AS RPT 0 OTIC USERS Uncl ass i fied
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c bi;l-ICE SYMBOL

00 FORM 1473,84 MAR UNCLASTFIFD

TABLE OF CONTENTS

LIST OF FIGURES..................... v

LIST OF TABLES...................... v

1.0 INTRODUCTION

1.1 Organization of the Report 2

1.2 Required DAP 610 Processing Rate 2

1.3 Summary of Results 3

2.0 DAP 610 ARCHITECTURE OVERVIEW 5

2.1 Array of Processor Elements 6

2.2 Master Control Unit and Code Memory 6

2.3 Host Connection Unit 6

2.4 Fast Data Channel 7

3.0 PERFORMANCE ANALYSIS OF THE DAP FAST I/O DEVICES 9

3.1 Input Device Coupler Requirements and Evaluation Results 9

3.2 Output to the Frame Buffer for Image Display 10

4.0 DAP 610 PROCESSING SPEED PERFORMANCE ANALYSIS . . . 13

4.1 DAP Image Demultiplexing and Formatting13

4.2 DAP Data Compression Processing 14

4.2.1 Data Compression Algorithm Overview15

4.2.1.1 Flow Diagram Representation 16

4.2.1.2 Data Compression Image Processing Operations17

4.2.2 DAP 610 Data Compression Processing Analysis Results19

4.2.2.1 List of the Data Compression Operations Evaluated 20

iii

4.2.2.2 Processing Times for the Operations Evaluated 21

4.2.2.3 Overall Data Compression Performance Results 21

4.3 DAP Organization of Data Compression Results 24

5.0 PERFORMANCE ANALYSIS OF THE DAP VMEBUS INTERFACE 25

5.1 DAP VMEbus Communication Processing Load 25

iv

LIST OF FIGURES

1. Real-Time Processor 1

2. Data Compression Processing Timeline 3

3. Major Functional Units of the DAP 610 5

4. Data Compression Flow 16

LIST OF TABLES

1. Format of the Data Received from the Sensor 10

2. Process Times for 10 Data Compression Sub Operations 21

3. Overall DAP 610 Data Compression Processing Time 23

Accession For

NTIS GRA&I
DTIC TAB
Unannounced El
JustifIcation

By-

Distribution/-

Availability Codes
IAvaft end/or

Dist Special

v

1.0 INTRODUCTION

At the request of the Waterways Experiment Station (WES), the Environmental Re-

search Institute of Michigan evaluated the performance of the DAPTM 610 (Active Memory

Technology's Distributed Array Processor) hardware for data compression in the Real-Time

Processor (RTP). All functions expected of the DAP 610 as the Compression Processor are

presented in this report.

Figure 1 illustrates the functions expected of the DAP 610 as it is configured in the Real-

Time Processor. The DAP is shown directly linked to an external sensor that will provide

multispectral images to the DAP. The DAP must properly format the incoming image data

and then in real time apply the data compression algorithm. Data compression results will

be output through the VMEbus to the Classification Processor. Classification results will be

returned to the DAP through the VMEbus and overlaid on one of the original three images

buffered by the DAP. The DAP must vertically compress the buffered image and then output

the image from the frame buffer board in either a page or scroll mode for image display.

Output of an image for display will be synchronized with completion of operations in the

Classification Processor.

Real-Time Processor System
DAP 610 Data Compression Processor Transputer

Fast V/0 Classification Processor
DaF-Fast VO C.hannel

-- ,, Interface P

' b ~Array of , M bus !

Elements

aFst V/0

jL Interlace " i

"rams
Buffer

Figure 1. Real-Time Processor

1.1 Organization of the Report

This report is organized into five sections. Section 1 summarizes the DAP's required

processing rate and evaluation results. Section 2 describes the DAP 610 architecture. Section

3 evaluates the fast I/O devices that allow fast input of sensor data to the DAP and output

of display data from the DAP. Section 4 presents all required array processing operations

with their corresponding performance results as well as an overview of the data compression

algorithm. Section 5 analyzes the DAP's VMEbus interface capabilities in relation to output

from the Compression Processor to the Classification Processor, and input of results from

the Classification Processor back to the DAP.

1.2 Required DAP 610 Processing Rate

The DAP will receive one frame of multispectral image data every second from the sensor.

One frame includes six channels each of size 750 words by 350 lines of 16-bit words. In

addition to this data, a variable number of null words will be added to the end of each scan

line because of scan mirror speed variations from one line to the next. The amount of null

words transmitted per frame is expected to be fixed at a 5 percent increase in the total data.

This will allow a synchronous data transfer rate of 3,307,500 bytes per frame. The DAP will

be programmed to select three of the six images received from the sensor for processing;

thus, the DAP must be capable of processing at least three images per second.

In order for the Compression Processor to meet the real-time processing requirements

shown in Figure 2, the DAP must acquire the image, perform all array processing operations,

and handle image display output all within one second. The architecture of the DAP can

handle simultaneous execution of these three operations without a large reduction in pro-

cessing performance. This concurrent processing capability of the DAP is illustrated in the

timeline diagram (Figure 2); it allows a full second for the execution of each of the three

tasks.

2

Image Acquire
(n + 1)

DAP Array Processing Operations

IrtIaI [[I I
Image input, Data Point Data Output Data Input Integrate

Demultiplexing, Compression Extraction to from Results with
and Formatting Processing (n) Classification Classification Screen Buffer

(n) (n) Processor Processor (n- 1)
(n) (n-1)

Display Image

(n -2)----------S I

I I

5 Image Frame Time of 1 seond

Figure 2. Data Compression Processing Timeline

1.3 Summary of Results

Evaluation results of the operations expected of the Compression Processor, as it is

configured in the RTP, are summarized in this section. These operations will be presented in

three categories: image acquisition, array processing, and image display. As illustrated in the

timeline diagram of Figure 2, operations of these three categories are executed concurrently

with each other; thus the operations of each category must be executed within the frame

time of one second.

Image acquisition includes receiving one frame (6 channels) of image data from the

sensor every second, identifying the start-of-line codes, and transferring three selected image

channels to DAP memory for data compression processing. At this time, AMT's interface

board, the FF10, is available but not capable of identifying the start-of-line or selecting

specific image channels for transfer to array memory. AMT's DIOC interface board could

be used as an alternative since the DIOC is capable of data identification and manipulation

operations. The DIOC is, however, still in the design phase at AMT and is not expected to

be available until June 1989, assuming no design problems.

3

The second category (array processing) includes the operations that are executed using

the processing power of the DAP array. The DAP array processing operations are shown in

the timeline diagram of Figure 2, and are listed below with processing times.

Activity Time

1. Move six images from D-Plane to DAP array memory 1.20ms

2. Identify and format three images for DAP processing not available

3. Implement the data compression algorithm 100.5ms

4. Organize results into coordinate and pixel value sets not available

S. Move data to and from the Classification Processor 48.Oms

6. Merge classification results with display buffer not available

7. Output display buffer to graphics board for display 0.80ms

The above operations can be added together to determine the total expected array pro-

cessing time. However, without essential information, ERIM cannot, at this time, determine

if the DAP 610 is capable of performing all seven operations within the required processing

time of one second.

High-resolution image display is the third category of operations executed by the Com-

pression Processor. As listed in operation 6 above, AMT's high-resolution image display

interface board depends on the processing power of the DAP to merge the classification re-

sults with the display image, and to handle the necessary data manipulation for paging or

scrolling. Operations falling into this category only involve moving the display image from

array memory to an external display system. There is ample time for AMT's display interface

board to execute this operation within the frame time of one second.

In addition to the real-time hardware capabilities outlined above, software tools to cre-

ate a real-time implementation program will be required. These tools (real-time support

firmware) should address intertask communication, task scheduling, and attaching user writ-

ten subroutines to interrupts. This software has not been identified as available from AMT

for support of the DAP 610. The cost to develop and write a similar package could be

prohibitive.

4

2.0 DAP 610 ARCHITECTURE OVERVIEW

The DAP 610 is a massively parallel computer system from Active Memory Technology

(AMTTM). The DAP, an acronym for Distributed Array of Processors, consists of four major

functional units:

1. Array of Processor Elements with Local Memory

2. Master Control Unit and Code Memory

3. Host Connection Unit

4. Fast Data Channel

The interconnections between the major functional units of the DAP 610 are illustrated in

Figure 3. The next four sections discuss each of the major functional units.

HotHost Maser
Cotn Code

Figure3. aoFional Unit ofmteA

5Arry d
i Elements

" Element

:ff (32K-lO24K
FastDat Cha T:Bits per

Proesor)

Z .- -- - 4. _..

Figure 3. Major Functional Units of the DAP 610

2.1 Array of Processor Elements

The DAP 61' has 4096 Processing Elements (PEs) arranged in a 64 by 64, square matrix.

The PEs are 1-bit processors with a standard 32 Kbits of local memory that is expandable

to i Mbit. The PEs may be viewed as a horizontal array with the local memory extending

downward from each PE. The PEs are connected via global row and column buses. In

addition, each PE is connected to a north, south, east and west neighbor. Operands are often

spread across the memory of a large number of PEs. All PEs selected as active simultaneously

execute the same instruction, using the same bit address within their own memory. This

type of implementation is referred to as a Single Instruction/Multiple Data (SIMD) stream

architecture.

2.2 Master Control Unit and Code Memory

The DAP is controlled by the Master Control Unit (MCU), which fetches and interprets

instructions from code memory. The MCU code memory has minimum and maximum sizes

of 512 Kbytes and 2 Mbytes, respectively. The MCU controls the DAP 610 processor array

by broadcasting instructions to the array of processing elements. The MCU also executes

nonarray control and I/O instructions.

The array memory and the MCU control memory are mapped into the VMEbus address

space. The MCU acts as a VME memory slave, sending data to the VMEbus only on request

from the Host Connection Unit (HCU) or another VMEbus master. The MCU is not directly

involved in moving data between array memory and an external VME device. The MCU

execution of user application code is halted for three cycles to read array memory, and one

cycle to write array memory. Read and write accesses must be performed as 32-bit transfers.

2.3 Host Connection Unit

The Host Connection Unit (HCU) links the DAP to a host. The HCU supports the Sun

and VAX workstations as hosts under the standard Unix and VMS operating systems. The

host is used for program development, debugging, loading, initiating and communicating

6

with DAP programs through the HCU. The HCU also performs VMEbus data movements, if

needed, for a program executing on the DAP.

The HCU contains a Motorola 68020, 32-bit microprocessor for interface control. The

HCU links to the MCU via the VMEbus and acts as a bus master. Permanent code can be

stored in the HCU's 256 Kbytes of EPROM. For temporary data or code storage. 1 Mbyte of

RAM is available on the HCU.

2.4 Fast Data Channel

A fast data link, shown in Figure 3 as the Fast Data Channel, is available for quick

movement of data to and from array memory. A device coupler board moves data directly

to and from the array memory via the DAP D-plane (an entire 64 by 64 array bit plane). A

maximum transfer rate of 50 Mbytes per second is possible.

Transferring of data is orchestrated by a device coupler board. For data input to the

DAP, the device coupler will first serially shift 128 successive 32-bit words from device coupler

buffers to the D-plane. The device coupler will next issue a D-plane unload command with a

destination address to the DAP. The DAP then takes one machine cycle of 1.00 ns to unload

the D-plane. Shifting of data in or out of the D-plane by the device coupler takes place

autonomously and in parallel with DAP array processing operations. DAP array processing

operations are only suspended for one cycle when the D-plane is moved to or from array

memory.

Up to four device coupler boards can be linked to the fast data channel. However,

because there is only one D-plane, the device couplers must arbitrate for usage of the D-

plane. Arbitration is implemented in parallel with the last bus cycle of the previous bus

master. For connection to the fast data channel, a frame buffer to drive a high-resolution

color display and general-purpose digital couplers are available.

7

3.0 PERFORMANCE ANALYSIS OF THE DAP FAST I/O DEVICES

The fast data link to array memory will be shared for image input and output. As

indicated in section 2.4, an entire 64 by 64 bit plane buffer called the D-plane is used to

move data between the I/O device couplers and array memory. Because there is only one D-

plane, the device coupler boards must share accesses to this buffer. In the next two sections,

the required input and output accesses to array memory are described. In section 3.1, AMT's

FFIO board, which may be used to input multispectral sensor data to array memory via the

D-plane, is evaluated. In section 3.2, AMT's graphics display board, which is used to output

resulting image data to a high-resolution display, is evaluated.

3.1 Input Device Coupler Requirements and Evaluation Results

The direct interface of the sensor to the DAP is expected to be handled by AMT's FF10

(FIFO (First In First Out] Fast Input/Output) board. Although the FF10 is capable of

atcepting sensor data at the required 3,307,500 bytes per second, a communication protocol

has not been developed for correct acceptance of sensor data. Once the sensor data is

received, movement of sensor data into array memory is easily handled by the FF10. However,

it is not clear how the FFIO board will identify the start-of-line code for each scan line.

Identification of the start-of-line codes will be required for proper storage of the images

since a variable number of null words follows each scan line. If the FFIO is found to be

inadequate, AMT's DIOC could be an alternative. The DIOC is capable of data identification

and manipulation operations. However, the DIOC is still in the design phase at AMT and

assuming no problems will not available until June 1989.

A certian amount of processing is required to reorganize the sensor data into a format

suitable for DAP processing. This processing can happen either by the interface board (if it

is capable) or by the DAP. One scan line of sensor data is presented in Table 1 to facilitate

description of the required reorganization processing that follows. As shown, in Table 1, each
scan line includes six channels of multiplex image data. From the six images, three must be

selected and demultiplexed for storage in separate locations in array memory. In addition,

9

40 words of housekeeping data accompanies each scan line. This housekeeping data must be

stripped from the actual image data. Lastly, 16-bit data is sent from the sensor, but 8-bit

data will be used for data compression processing, most likely, the most significant 8 bits.

AMT's DIOC board is expected to handle the required data manipulation processing. The

FFIO is incapable of this image reformatting processing; thus, if the FF10 is used, the DAP

will be burdened with an additional processing load (described in section 4.1).

Table 1. Format of the Data Received from the Sensor

Channel I Word I
Channel 2 Word 1
Channel 3 Word 1
Channel 4 Word 1
Channel 5 Word 1
Channel 6 Word 1
Channel 1 Word 2

Channel 6 Word 750
Null Words

Words 1-4 Start of Frame Code (SOF)
Words 5-32 Line Parametric Data
Word 33 REF I
Words 34-743 Image Data
Word 744 REF 2
Words 745-750 End of Frame Code (EOF)

3.2 Output to the Frame Buffer for Image Display

High-resolution image displays are required of the DAP. For every frame of image data

processed, three images are stored in array memory. One of these three images will be

copied to the DAP screen buffer (a designated location within array memory). The image

in the screen buffer will be overlaid with the results of the classification algorithm and then

possibly be vertically decimated. Additional processing to format the display image in either

the scrolling or paging modes will also be performed in the screen buffer.

10

Two image display methods (paging and scrolling) of the DAP are desired at this time.

The exact method will be selected in the future after the appropriate human factors testing.

To implement paging, the screen buffered image (1K by 1K) will be output to the graphics

display card at a rate of one per six frames received if vertical decimation is used, and one

per three frames if the screen buffered image is not vertically decimated. To implement

scrolling, the display image is shifted up at the rate of 10 to 20 times per second with new

image data added to the bottom of the display image to give the effect of a smooth scroll.

The processing required to execute scrolling, paging, and vertical decimation is imple-

mented in the array of PEs under control of the MCU. The operations listed below are under

the last section "Integrate Results with Screen Buffer" in Figure 2.

Activity Time

1. Copy image to DAP screen buffer not available

2. Integrate classification results with screen buffer not available

3. Vertically decimate the screen buffer not available

4. Implement scrolling not available

5. Implement paging not available

These operations are a small part of the required array processing operations imple-

mented within the frame time of one second. The effect of these operations on the allowed

one second of processing time has not been determined at this time.

Transfer of image display data stored in array memory to the high-resolution display takes

place via the D-plane by the interface board. Moving data from the D-plane by the interface

board takes place independently and has no effect on the array processing operations. With

a frame time of one second, the MCU will only be suspended for 0.80 ms while image data is

moved to the D-plane. The interface board will require access of the D-plane for the transfer

of up to 1 Mbyte of image data per frame (one second). This can be accomplished because

the D-plane will be unused for more than 90 percent of the given frame time.

11

4.0 DAP 610 PROCESSING SPEED PERFORMANCE ANALYSIS

In this section, a processing speed analysis of the DAP 610 is presented for performing

the following operations:

1. Demultiplexing the multispectral image data

2. Separation of housekeeping data from image data

3. Conversion of 16-bit data to 8-bit data

4. Image formatting for image processing

5. Implemention of a data compression algorithm

6. Organization of data compression results into coordinate and pixel value sets

The timeline diagram of Figure 2 illustrates all the array processing operations that are

required within the frame time of one second. The "Image Input, Demultiplexing, and

Formatting" section includes the first four operations listed above. A description of the

four operations is in the next section. Item 5 corresponds to the operation labeled "Data

Compression Processing" in the timeline diagram. In section 4.2, the data compression

algorithm (item 5) is introduced and presented with corresponding processing performance

results for implementation on the DAP 610. Item 6 corresponds to the "Point Extraction"

operation in the timeline diagram and is presented in section 4.3.

4.1 DAP Image Demultiplexing and Formatting

The format of image data received from the sensor is not suited to data compression

processing. As indicated in section 3.1 and shown in Table 1, image data is received from

the sensor in a six-channel line-multiplexed fashion. Demultiplexing of this image data into

six separate images is required. The sensor data also includes housekeeping data that must

be separated from the actual image data. As illustrated in Table 1 of section 3.1, 33 words

of housekeeping data precede the image data and 7 words follow. In addition, 16-bit image

values are received from the sensor but 8-bit values are required. Of the 16 bits only 12

13

are actually valid pixel bits. The most significant 8 bits of this 12 contain most of the

pixelintensity information. Some type of (unspecified at this time) functional encoding will

convert the 12-bit pixels into 8 bits for processing by the data compression algorithm. Lastly,

the image data must be formatted into the crinkle format which is the format required by

the DAP array for execution of the data compression algorithm.

The section of the timeline diagram of Figure 2 labeled "Image Input, Demultiplexing,

and Formatting" includes implementation of the operations described above. The processing

times of these operations are unavailable now except for the last operation.

Activity Time

1. Demultiplexing of the three images not available

2. Separation of housekeeping data not available

3. Convert 16-bit words to 8 bits not available

4. Format the image into the crinkle format 5.Oms

These operations are a small part of the required DAP array processing operations im-

plemented within the frame time of one second. The effect these operations will have on the

allowed one second of processing time cannot be determined at this time.

4.2 DAP 610 Data Compression Processing

The approach taken to analyze the implementation of the data compression algorithm

on the DAP 610 is described in this section. Section 4.2.1 presents an overview of the

data compression algorithm. Section 4.2.2 gives a processing speed evaluation of the data

compression algorithm implemented on the DAP.

This DAP 610 data compression processing analysis uses processing times calculated by

AMT for their DAP 610. The processing times calculated were for 10 major suboperations used

in the data compression algorithm, because the data compression algorithm can be described

in terms of the ten identified suboperations. After describing the data compression algorithm

in terms of the identified major suboperations, a total processing time is calculated using

14

the processing times measured by AMT. AMT was given the constraint of frame-by-frame

processing on an image size of 700 pixels by 350 lines for determination of the processing

times. In addition, the data precision required for the individual operations was fixed at

the minimum amount of precision that the operation requires to avoid overflow. This data

precision is different from the original C program written by WES (Waterways Experiment

Station, U.S. Army Corps of Engineers).

4.2.1 Data Compression Algorithm Overview

For each frame of data received from the sensor, a set of three images are passed to array

memory for data compression processing. The data compression operations reduce the image

data to a small set of (x, y) coordinates and pixel values that identify potential objects of

interest. For each (x, y) location, a pixel value at the specified location is returned from each

of the three processed images. This resulting data is output to the Classification Processor.

The data compression algorithm presented in the following sections is a translation of

a WES program written in the C programming language. In section 4.2.1.1, an operational

flow diagram of the data compression algorithm is presented. Following in section 4.2.1.2, a

more detailed description of the algorithm is given.

15

4.2.1.1 Flow Diagram Representation

The flow diagram representation (Figure 4) conveys much information about the algo-

rithm. The operations that can be processed in parallel are shown horizontal to each other.

Each of the three image channels (difference, sum, and thermal) can be processed in parallel

as illustrated. Operations that are contingent upon the completion of a previous operation

are shown with input arrows which represent the result of the previous operation. The re-

sulting data precision for each of the major operations performed can be seen by the size of

the resulting data buses going between blocks.
D ffo@ence Sum Thermal

D~
r e l

l f er I,,oe e l PIn I 1 1 1 [Threshold

1~lij, / Thresho I Ih~hl r.ui..o.qe... F 3 . . ,o

IsI

Iml~u a gah e alulteth

P o i n . .t e C a l c u a o te O e vatio n

S s-b t Shape
Thresaghs

10~~~ 10 8C2 C

Pon Targe herehol IimyageeIag ple,,t

IPIUI Pixel PItxeJ

Figure 4. Data Compression Flow Diagram

16

.... .. • ii conv l iiii
I

4.2.1.2 Data Compression Image Processing Operations

The data compression algorithm begins by performing an edge detection operation (de-

scribed in section 4.2.1.2.1) on the three input images: the difference, sum, and thermal

images. The resulting edge detected binary images are processed for object detection and

result in a corresponding binary shape image for each of the original three images. The

object detection operations are described in more detail in section 4.2.1.2.2. Single point

objects are detected in the difference image by the point target operations described in sec-

tion 4.2.1.2.3. In addition, to exclude image information that is not expected to be a part of

a potential object, the original thermal and difference images are thresholded. A description

of this thermal and difference image thresholding is given in section 4.2.1.2.4.

The results of the above operations are used for the identification of image pixels in the

original images that may be part of an object. The exact function that the results of the

above operations play in this final detection step is described in section 4.2.1.2.5.

4.2.1.2.1 Edge Detection

The data compression algorithm begins by performing an edge detection operation on

each of the three input images. Three binary images corresponding to the three image

channels are generated. The generated images are flagged with a pixel of value one (depicting

an edge) everywhere a pixel grey value greater than the calculated threshold value is detected.

Calculation of the image edge threshold values are implemented by using the results of a

histogram operation from the corresponding image. The histogram data is used to calculate

a corresponding mean value and then a standard deviation value. The calculated image edge

threshold values are a function of the standard deviation values.

A Sobel edge detection operation (using a 3 by 3 kernel) is next performed on each of the

three channels. The resulting images are then compared to their corresponding calculated

image edge threshold values as described above. A new binary image is generated and

contains a pixel of value one everywhere a pixel in the Sobel image is greater than the edge

threshold value.

17

4.2.1.2.2 Object Detection

The detected edges flagged in the three binary images generated above are further pro-

cessed to identify potential objects. A donut operation (7 by 7 convolution) is performed on

each of the three binary images. The binary edge highlighted images are 6-bit images. The

shape images are next compared to corresponding calculated shape threshold values. This

thresholding separates background information from potential objects. Three new binary

shape images with pixels of value one, indicating the presence of an object, are the end

result of this object detection processing.

The three binary shape images (difference, sum, and thermal) generated will be used in

a final thresholding operation (described in section 4.2.1.2.5) to identify potential objects for

processing by the Classification Processor.

4.2.1.2.3 Point Target Detection

The point target detection operation is used to identify targets that register as a single

pixel point in the difference image. If the difference between a center pixel and its neighbors

is greater than 20 times the standard deviation (of this difference image), then a potential

target that registered as a point has been detected. This point is flagged in a newly generated

binary image as a pixel of value one.

The point target binary shape image generated here for the difference image will be used

in a final thresholding operation (described in section 4.2.1.2.5) to identify potential objects

for processing by the Classification Processor.

4.2.1.2.4 Difference and Thermal Image Thresholding

Most nonobject information is removed from the difference and thermal images by the

thresholding operaticns described here. A binary image for each of the images processed is

generated with pixels of value one everywhere potential objects may exist.

The difference and thermal images are each histogrammed and the resulting histogram

data is used to calculate corresponding threshold values. Each threshold value is an 8-bit

grey level value that represents a single pixel value. For the difference image, 90 percent

18

of the pixels in the image have a grey value below the identified threshold value. For the

thermal image, 25 percent of the pixels in the image have a grey value below the identified

threshold value.

The corresponding threshold values are then used to generate a corresponding binary

image with pixels of value one everywhere an original image pixel value is greater than the

corresponding threshold value.

The thermal and difference threshold binary images generated will be used in a final

thresholding operation (described in section 4.2.1.2.5) to identify potential objects for pro-

cessing by the Classification Processor.

4.2.1.2.5 Objects Flagged for Processing by the Classifier

The operations above result in the generation of six binary images. These binary images

are analyzed as a final data compression operation to identify potential objects for processing

by the Classification Processor.

If a pixel at the same location in the thermal and difference threshold binary images are

pixels of value one, and if any one of the binary images listed below also has a pixel of value

one, then the (x, y) coordinates for the given location and pixel values from the original three

images at the given location are sent to the Classification Processor.

" Point target binary image

" Shape binary image corresponding to the difference channel

* Shape binary image corresponding to the thermal channel

" Shape binary image corresponding to the sum channel

4.2.2 DAP 610 Data Compression Processing Analysis Results

The processing speed performance analysis of the DAP 610 for execution of the data

compression algorithm is presented in this section. First, in section 4.2.2.1, a list of 10 major

data compression suboperations that were used to evaluate the capabilities of the DAP 610

are given. In section 4.2.2.2, the processing times of the listed major suboperations are

19

given. Finally, in section 4.2.2.3, the data compression algorithm is described in terms of

the major suboperations and a total DAP 610 data compression implementation processing

time is given.

4.2.2.1 List of the Data Compression Operations Evaluated

The data compression algorithm can be described by the 10 operations listed below.

1. Perform a histogram on the image

2. Perform Summation and Comparison

255

E h[i]t until > 18-bit test Value
i=0

3. Generate a binary image base on image thresholding using an 8-bit constant as

the threshold value.

4. Determine Average Pixel value

25 h[i]
F= 700 x 350)

5. Determine Standard Deviation

yZ2550(• "v x 2 x hi

V 700 x 350

6. Perform a 3 by 3 Convolution; the convolution mask is 1 everywhere except the

center which is 8.

7. Perform a 3 by 3 Sobel

8. Perform a Donut Operation on a 700 pixel by 350 line binary image; using a 7 by

7 kernel this operation generates a new 6-bit center pixel. The kernel mask is 1

h[i] are 18-bit values

20

everywhere except the center 3 by 3 neighborhood which is 0. The center pixel is

the sum of pixels in the 7 by 7 kernel where the mask is 1.

9. Perform a pixel-by-pixel bit-wise logical OR operation on four 700 pixel by 350

line binary images.

10. Perform a pixel-by-pixel bit-wise logical AND operation on three 700 pixel by 350

line binary images.

4.2.2.2 Processing Times for the Operations Evaluated

The processing times for the 10 data compression algorithm suboperations, listed in the

previous section, are given in this section. The DAP 610 processing times (Table 2) were

calculated by AMT and were performed on images of size 700 pixel by 350 line image with

8-bit pixels.

Table 2. Process Times for 10 Data Compression Suboperations

Operation Process Time

1. Perform Histogram 10.OOms

2. Perform Summation and Comparison O.tOms

3. Generation of Binary Image based on Thresholding O.13ms

4. Determine Average Pixel Value 0.36ms

5. Determine Standard Deviation 0.72ms

6. Perform 3 by 3 Convolution 1. tOms

7. Perform 3 by 3 Sobel 1.50ms

8. Perform Donut Operation 1O.OOms

9. Perform Pixel by Pixel bit-wise logical OR O.02ms

10. Perform Pixel by Pixel bit-wise logical AND O.03ms

4.2.2.3 Overall Data Compression Performance Results

The flow diagram in Figure 4 of section 4.2.1.1 illustrates that the data compression

algorithm could be processed in parallel provided the processing hardware was available. The

21

architecture of the DAP 610 is not suited for a parallel implementation of the algorithm; thus,

the performance analysis of the DAP 610 presented here is based on a serial implementation.

A serial implementation of the data compression algorithm can be described in terms of

the 10 operations listed in section 4.2.2.1. The number of possible serial implementations

of the data compression algorithm is unlimited. For this analysis the serial implementation

selected was roughly obtained by serially walking through the flow diagram of Figure 4.

Starting at the top box of Figure 4 and moving down the main path implementing edge

detection and then the object detection operations results in three binary shape images.

Next, the path on the far left was implemented generating the difference threshold image.

This is followed by implementation of the path on the far right that gives the thermal

threshold binary image. Next, the second path from the left is executed to obtain a point

target binary image. Finally, the last box in Figure 4 is implemented resulting in a binary

image.

Pixels of value one in this final binary image indicate the presence of potential objects.

The Classification Processor is sent a set of data for each pixel of value one. Each set is

composed of an (x, y) coordinate (indicating the location of the pixel of value one) and three

pixel values. A pixel, at the specified coordinate, is taken from each of the original three

images.

In Table 3 on the next page, the operations of the selected serial implementation are

listed with their corresponding processing times.

22

Table 3. Overall DAP 610 Data Compression Processing Time

Operation Process Time

Edge Detection

Histogram the Three Images 30.OOms

Determine Average Pixel Value for Each Input Image 1.08ms

Determine Standard Deviation for Each Input Image 2.16ms

Perform a 3 by 3 Sobel Operation on Each Input Image 4.50ms

Generate a Binary Edge Image for Each Input Image 0.30ms

Object Detection

Perform a Donut Operation on Each Input Image 30.OOms

Histogram the Three Shape Images 30.OOms

Determine Corresponding Image Thresholds 0.30ms

(Summation and Comparison)

Generate a Binary Shape Image for Each Input Image 0.30ms

Generation of the Difference Threshold Binary Image

Determine Difference Image Threshold O.tOms
(Summation and Comparison)

Generate Difference Threshold Binary Image O.13ms

Generation of the Thermal Threshold Binary Image

Determine Thermal Image Threshold O.lOms

(Summation and Comparison)

Generate Thermal Threshold Binary Image O.13ms

Point Target Detection

Perform a 3 by 3 Convolution on the Difference Image 1.tOms

Generate a Point Target Binary Image 0. 13ms

Final Thresholding Operation

Perform Four Pixel by Pixel bit-wise Logical ORs 0O08ms

Perform Three Pixel by Pixel bit-wise Logical ANDs 0.09ms

The required DAP 610 processing time is 100.5 ms, assuming no dead time between the

execution of the above operations and no image reformatting.

23

4.3 DAP organization of Data Compression Results

The data compression operations described in section 4.2 result in t,,e generation of a

binary image with pixels of value one indicating potential objects that are to be processed

by the Classification Processor. For each pixel of value one a data set is output to the

Classification Processor. A maximum of 5,000 data sets are expected. Each set of the

5,000 is composed of an (x, y) coordinate and three pixel values. A pixel, at the specified

coordinate, is taken from each of the original three images.

The DAP array under the control of the MCU will be used to identify the pixels of

value one, determine their coordinates, and then obtain the pixel values from the original

three images at the corresponding location. The "Point Extraction" section of the timeline

diagram of Figure 2 encompasses the operations described above. The processing effect these

operations will have on the one second frame time has not yet been determined.

24

5.0 PERFORMANCE ANALYSIS OF THE DAP VMEBUS INTERFACE

Data movement between the two main components of the RTP (the DAP 610 and the

Classification Processor) is an additional source of processing load. Communication in both

directions between the two processors is carried out over a VMEbus link. A compressed set

of data resulting from the data compression processing is first output to the Classification

Processor. The Classification Processor then categorizes and groups the pixel data received

from the DAP into individual objects. The objects identified by the Classification Processor

are given a rank value corresponding to the likelihood that they belong to an object of

interest and are then returned to the DAP for display.

The processing load to implement the described data transfers total 3.2 ms of MCU time

and 48.0 ms of VMEbus usage. The calculation of these processing times are presented in

the next section.

5.1 DAP VMEbus Communication Processing Load

The data compression operations result in a maximum of 5,000 sets of coordinates and

pixel values indicating potential objects of interest. This data set is output to the Classifi-

cation Processor. Each set of the 5,000 is composed of an (x, y) coordinate and three pixel

values. A pixel, at the specified coordinate, is taken from each of the original three images.

Each set of the 5,000 can be expressed by two 32-bit words where the (x, y) coordinates (16

bits each) are one 32-bit value and the three 8-bit pixel values are another 32-bit value. The

5,000 sets of data amount to a total of 10,000 32-bit words or 40,000 bytes.

The classification results sent back for display require the transfer of a maximum of 1,000

objects. Each object of the 1,000 is composed of an (x, y) coordinate and one pixel rank

value. Each set can be expressed by two 32-bit words where the (x, y) coordinates (16 bits

each) are one 32-bit value and the rank (8-bit pixel) value as the other 32-bit value. The

1,000 objects of data amount to a total of 2,000 32-bit words or 8,000 bytes.

25

As indicated in section 2.2, the addressing of array memory from the VMEbus halts the

DAP Master Control Unit (MCU). The MCU is stopped for 3 cycles to read and 1 cycle to

write array memory. Read and write accesses are performed as 32-bit transfers. A total of

10,000 read and 2,000 write accesses are expected as presented above. This requires the MCU

to be halted for a total of 32,000 bus cycles. With a bus cycle of 100 ns, the total MCU idle

time is 3.2 ms.

The MCU is not directly involved in moving data between array memory and an external

VME device. The MCU is only halted from continuing the execution of user application

code for the 3.2 ms indicated above. Moving 32 bits of data between array memory and

an external VME device is specified by AMT to take as much as Ils. This rate can only be

maintained if a VMEbus master device could keep up. A more conservative figure of 4jis per

32-bit transfer will be used in the calculations that follow.

The total amount of data expected to be transferred over the VMEbus is 12,000 32-bit

words. At a rate of 41is per 32-bit transfer, this amounts to a total data transfer time of 48

ms. The effect of this processing load on the one second of frame time is only 0.48 percent.

This processing load is for the data output and data input operations labeled in the timeline

diagram of Figure 2.

26

